A comprehensive summary informativeness evaluation for RST-based summarization methods
نویسندگان
چکیده
Motivated by governmental, commercial and academic interests, automatic text summarization area has experienced an increasing number of researches and products, which led to a countless number of summarization methods. In this paper, we present a comprehensive comparative evaluation of the main automatic text summarization methods based on Rhetorical Structure Theory (RST), claimed to be among the best ones. Additionally, we test machine learning techniques trained on RST features. We also compare our results to superficial summarizers, which belong to a paradigm with severe limitations, and to hybrid methods, combining RST and superficial methods. Our results show that all RST methods have similar overall performance and that they outperform the superficial methods. In terms of precision, the method we propose is the best one, while it competes with other ones for coverage. Machine learning techniques achieved high accuracy in the classification of text segments worth of being in the summary, but were not able to produce more informative summaries than the regular RST methods.
منابع مشابه
Graph Hybrid Summarization
One solution to process and analysis of massive graphs is summarization. Generating a high quality summary is the main challenge of graph summarization. In the aims of generating a summary with a better quality for a given attributed graph, both structural and attribute similarities must be considered. There are two measures named density and entropy to evaluate the quality of structural and at...
متن کاملEvaluation of Automatic Video Summarization Systems
Compact representations of video, or video summaries, data greatly enhances efficient video browsing. However, rigorous evaluation of video summaries generated by automatic summarization systems is a complicated process. In this paper we examine the summary evaluation problem. Text summarization is the oldest and most successful summarization domain. We show some parallels between these to doma...
متن کاملA survey on Automatic Text Summarization
Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...
متن کاملA Template-based Abstractive Meeting Summarization: Leveraging Summary and Source Text Relationships
In this paper, we present an automatic abstractive summarization system of meeting conversations. Our system extends a novel multi-sentence fusion algorithm in order to generate abstract templates. It also leverages the relationship between summaries and their source meeting transcripts to select the best templates for generating abstractive summaries of meetings. Our manual and automatic evalu...
متن کاملQuantifying the informativeness for biomedical literature summarization: An itemset mining method
OBJECTIVE Automatic text summarization tools can help users in the biomedical domain to access information efficiently from a large volume of scientific literature and other sources of text documents. In this paper, we propose a summarization method that combines itemset mining and domain knowledge to construct a concept-based model and to extract the main subtopics from an input document. Our ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009